
Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 1 2/08/2018

Talon SRX Motion Profile

Reference Manual

Revision 2.0

Cross The Road Electronics

www.ctr-electronics.com

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 2 2/08/2018

Table of Contents
1. What is the Motion Profile Control Mode? ... 6

1.1. What is the benefit? ... 6

2. Functional Diagram ... 7

3. Signal List and Terms ... 7

3.1. Motion Profile Buffer (MPB) ... 7

3.2. Motion Profile Executer (MPE) ... 7

3.3. Global Trajectory Point Duration .. 7

3.4. Trajectory Point .. 7

3.4.1. The Last Trajectory Point .. 7

3.4.2. Trajectory Point Duration (Milliseconds) .. 8

3.4.3. Trajectory Point Velocity ... 8

3.4.4. Trajectory Point Position ... 8

3.4.5. Trajectory Point Heading (Degrees) .. 8

3.4.6. Trajectory Point Profile Slot Select 0 ... 8

3.4.7. Trajectory Point Profile Slot Select 1 ... 8

3.4.8. Trajectory Point Is Last ... 8

3.4.9. Trajectory Point Zero Position ... 8

3.5. Motion Profile Set Value (Set Output, or Output Type) ... 9

3.6. Active Trajectory .. 9

3.6.1. Active Trajectory Is Valid .. 9

3.6.2. Active Trajectory Velocity .. 9

3.6.3. Active Trajectory Position.. 9

3.6.4. Active Trajectory Heading ... 9

3.6.5. Active Trajectory Profile Slot Select 0 ... 9

3.6.6. Active Trajectory Profile Slot Select 1 ..10

3.6.7. Active Trajectory Is Last ...10

3.6.8. Active Trajectory Zero Position ..10

3.7. Is Underrun ...10

3.8. Has Underrun ...10

3.9. (Bottom, Firmware-level) Buffer Count ..10

3.10. (Bottom, Firmware-level) Buffer Is Full ..10

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 3 2/08/2018

3.11. Feed-Forward Gain ...11

3.12. Proportional Gain ..11

3.13. Integral Gain ..11

3.14. Derivative Gain ..11

3.15. (Top, API-level) Buffer Count ...11

4. Theory of Operation ...12

5. New Motion Profile API ..13

5.1. New Motion Profile API – LabVIEW ..13

5.2. New Motion Profile API – Java ..14

6. Software Integration Steps ...15

6.1. Direct Drive the Talon SRX and Check Sensor ...15

6.1.1. Direct Drive the Talon SRX and Check Sensor - Java ...16

6.2. Measure Peak RPM to Calculate F-gain ...17

6.3. Generating the trajectory points ..17

6.3.1. Using a CSV File (for LabVIEW) ..19

6.3.2. Using an array in a script language. (C++, Java, HERO C#, etc.).19

6.4. Sending the trajectory points ...20

6.4.1. Sending the trajectory points – Java ..20

6.4.2. Sending the trajectory points – LabVIEW ...22

6.5. Activating the Motion Profile ..23

6.5.1. Activating the Motion Profile – Java ...23

6.5.2. Activating the Motion Profile – LabVIEW ..23

6.6. Checking the Motion Profile Status ...23

6.6.1. Checking the Motion Profile Status – LabVIEW ...24

6.6.2. Checking the Motion Profile Status – Java ...24

6.7. Complete Example Overview ..24

6.7.1. Complete Example – LabVIEW ..24

6.7.2. Complete Example – Java ...26

6.7.3. Complete Example – C++ ..26

7. Download the Examples ..28

7.1. Download a file “as is” from GitHub ...28

7.2. Download links ..29

7.3. Example – HERO C# ..29

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 4 2/08/2018

8. Suggested Testing / General Recommendations ...29

9. Troubleshooting Tips and Common Questions ..30

9.1. Where can I find the other resources mentioned? Software Reference Manual, Motion

profile generator, example source? ...30

9.2. What motor controllers, which firmware is required for this feature?30

10. Functional Limitations ...31

10.1. C++ References missing in document. ..31

11. Revision History ...31

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 5 2/08/2018

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation
possible to ensure successful use of your CTRE products. To this end, we will
continue to improve our publications, examples, and support to better suit your
needs.

If you have any questions or comments regarding this document, or any CTRE
product, please contact support@crosstheroadelectronics.com

To obtain the most recent version of this document, please visit
www.ctr-electronics.com.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 6 2/08/2018

1. What is the Motion Profile Control Mode?
The Talon SRX supports a number of control modes…

• Percent Output

• Position Closed-Loop

• Velocity Closed-Loop

• Current Closed-Loop

These modes are documented in the Talon SRX Software Reference Manual and allow a

“Robot Controller” to specify/select a target value to meet. The target can simply be the percent

output motor drive, or a target current-draw. When used with a feedback sensor, the robot

controller may also simply set the target position, or velocity to servo/maintain.

However, for advanced motion profiling, the Talon SRX additionally supports a mode whereby

the robot controller can stream a sequence of trajectory points to express an entire motion

profile.

Each trajectory point holds the desired velocity, position, and time duration to honor said point

until moving on to the next point. These points can be sent to the Talon before executing the

motion profile ensuring that enough points are buffered for smooth transitions.

Alternatively, the trajectory points can be streamed into the Talon as the Talon is executing the

profile, so long as the robot controller sends the trajectory points faster than the Talon

consumes them. This also means that there is no practical limit to how long a profile can be.

1.1. What is the benefit?

Leveraging the Motion Profile Control Mode in the Talon SRX has the following benefits…

• Direct control of the mechanism throughout the entire motion (as opposed to a single

PID closed-loop which directly servos to the end target position).

• Accurate scheduling of the trajectory points that is not affected by the performance of the

primary robot controller.

• Improved repeatability despite changes in battery voltage.

• Improved repeatability despite changes in motor load.

• Provides a method to synchronously gain-schedule.

Additionally, this mode could be used to schedule several position servos in advance with

precise time outs. For example, one could map out a collection of positions and timeouts, then

stream the array to the Talon SRX to execute them.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 7 2/08/2018

2. Functional Diagram
Below is a simplified functional diagram of the motion profile firmware in the Talon SRX.

3. Signal List and Terms

3.1. Motion Profile Buffer (MPB)

The firmware buffer in the Talon SRX. The MPB can hold up to 128 trajectory points at once

(with the current firmware, see Section 9.2 for requirements).

3.2. Motion Profile Executer (MPE)

The Motion Profile Executer is the firmware that calculates the motor-output based on the active

trajectory point. It includes two closed loops, an inner and an outer. In both loops, the partial

output is calculated and is updated every 1ms. The Inner loop uses the feedback device & gains

from PID index 0, the Outer loop uses the feedback device & gains from PID index 1. The motor

output is the sum or difference of the two loops. The MPE holds one trajectory point at a time.

Should the Talon Motion Control features be activated when there is no trajectory point buffered

into the MPE, the motor output will be neutral.

3.3. Global Trajectory Point Duration

The global trajectory point duration is a parameter that allows the user to specify the normal

point duration of a motion profile. The user can then choose to add more time to any specific

point by setting that point’s duration.

3.4. Trajectory Point

This term refers to the trajectory point sent to the Talon SRX buffer. This is not the point

currently used for calculating the motor output.

3.4.1. The Last Trajectory Point

When generating the trajectory points, the final trajectory point in the profile is referred to as the

“Last Trajectory Point”. This point typically has the following properties…

- The velocity to feed-forward is set to zero.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 8 2/08/2018

- The “Is Last” flag is set to “true”.

This ensures that when the MPE processes the last point, it will hold position indefinitely (or until

the robot controller decides the next course of action).

3.4.2. Trajectory Point Duration (Milliseconds)

The extra time to servo this trajectory point in milliseconds. This adds to the global Trajectory

Point Duration, with the options of +0ms, +5ms, +10ms, +20ms, +30ms, +40ms, +50ms, and

+100ms.

3.4.3. Trajectory Point Velocity

This is the velocity to feed-forward when this trajectory point is loaded into the MPE.

3.4.4. Trajectory Point Position

This is the position to target for the PID closed loop portion of the MPE inner loop when this

trajectory point is loaded into the MPE.

3.4.5. Trajectory Point Heading (Degrees)

This is the heading to target for the PID auxiliary closed loop portion of the MPE outer loop

when this trajectory point is loaded into the MPE.

3.4.6. Trajectory Point Profile Slot Select 0

Selects which slot to pull the closed-loop gains for Position when the MPE processes this point.

Talon persistently stores four sets of closed-loop parameters. This allows for atomic switching

between four unique sets of gain-constants and I-Zone.

3.4.7. Trajectory Point Profile Slot Select 1

Selects which slot to pull the closed loop gains for Heading when the MPE processes this point.

Talon persistently stores two sets of closed loop parameters for Heading closed loop. This

allows for atomic switching between two unique sets of gain-constants and I-Zone

3.4.8. Trajectory Point Is Last

Set to “true” if trajectory point is the final point of the motion profile. This signals the MPE to

continue to servo this point even after its time duration expires. Be sure to zero the position of

this trajectory point so that MPE will closed-loop to the final intended position.

3.4.9. Trajectory Point Zero Position

If a trajectory point has this flag set, the MPE will zero the position value of the selected sensor

when this trajectory point is processed. Typically, this would be done only with the first

trajectory point of the motion profile. The goal is to clear the position so that the position values

of the following trajectory points are relative to the start position of the mechanism.

The generated trajectory points could be calculated to not require re-zeroing the sensor. This

flag merely provides the option to express a profile relative to the current physical position of the

mechanism.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 9 2/08/2018

3.5. Motion Profile Set Value (Set Output, or Output Type)

The set-value is interpreted as follows:

0 - Motor output is neutral.

1 - Motor output is driven by the MPE. MPE will pop the “first” point from the MPB. If the

MPE does not have a point (is empty) Motor output is neutral and “Is Underrun” is set.

2 - Motor output is in “hold”. The active trajectory point inside the MPE will be driven

indefinitely (while set-value is ‘2’ and control mode is “Motion Profile”). This is useful

when a profile has finished and the user needs to disconnect the MPE from the MPB to

begin buffering the next action, meanwhile the MPE will continue to servo/drive the

loaded point.

This set-value is typically only useful when the “Last” trajectory point has been reached,

which typically has a target velocity of ‘0’, and simply will servo/maintain the final

position.

3.6. Active Trajectory

The active trajectory is the trajectory point loaded into the MPE. This holds the velocity,

position, and flags used by the MPE to calculated the motor output.

3.6.1. Active Trajectory Is Valid

Since it is possible for the MPE to be “empty”, there must be a flag to instrument this. For

example, if the robot controller sends a nonzero Motion Profile Set Value when there are no

trajectory points buffered, this will cause the MPE to be active when no trajectory point is

available to shift into the MPE. When this happens, this flag will be false, and motor output will

be neutral.

When reading the other member signals of Active Trajectory, this flag should be checked first.

3.6.2. Active Trajectory Velocity

The velocity the MPE will feed-forward if activated.

Only valid if “Active Trajectory Is Valid” is true.

3.6.3. Active Trajectory Position

The position the MPE will target if activated.

Only valid if “Active Trajectory Is Valid” is true.

3.6.4. Active Trajectory Heading

The heading the MPE will target if activated

Only valid if “Active Trajectory Is Valid” is true.

3.6.5. Active Trajectory Profile Slot Select 0

The selected slot that the MPE will pull closed-loop parameters from for the inner loop if

activated.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 10 2/08/2018

Only valid if “Active Trajectory Is Valid” is true.

3.6.6. Active Trajectory Profile Slot Select 1

The selected slot that the MPE will pull closed-loop parameters from for the outer loop if

activated.

Only valid if “Active Trajectory Is Valid” is true.

3.6.7. Active Trajectory Is Last

The “Is Last” signal of the active trajectory point currently in the MPE. MPE will continue to

servo this point indefinitely, allowing robot application to prepare next profile or change modes.

Only valid if “Active Trajectory Is Valid” is true.

3.6.8. Active Trajectory Zero Position

The “Zero Pos” signal of the active trajectory point currently in the MPE.

Only valid if “Active Trajectory Is Valid” is true.

3.7. Is Underrun

If the MPE is ready to process a new active trajectory point, but one is not available, this flag is

set. The underrun behavior of the Talon depends on which three situations caused the

underrun…

• Robot application has signaled MPE to start, but there is no buffered trajectory point to

start with. Motor-output is neutral until a point is available.

• Robot application has signaled MPE to hold, but there is no active trajectory point in the

MPE. Motor-output is neutral until a point is available.

• During the execution of a profile, the MPE timed out the active trajectory point, and was

ready for the next point, but one was not available (MPB was empty). When this

happens MPE will continue to use the active trajectory point until a new point is available

in the buffer. In other words, MPE will not release the active trajectory point if the next

point is not available.

All three situations are caused by the robot controller not providing trajectory points to keep

pace with the execution, or enabling the MPE before enough trajectory points are buffered.

This flag is automatically cleared when the problem condition is resolved.

3.8. Has Underrun

When Is Underrun is set, Has Underrun is also set. However, this flag only is cleared by the

robot application using the robot API. This ensures the robot application can poll for underrun

behavior infrequently without risking missing intermittent buffer underruns.

3.9. (Bottom, Firmware-level) Buffer Count

The number of trajectory points buffered in the MPB.

3.10. (Bottom, Firmware-level) Buffer Is Full

Flag indicating the firmware trajectory buffer is full in the MPB.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 11 2/08/2018

3.11. Feed-Forward Gain

When used in Motion Control Mode, this value is used to feed-forward the target velocity gain.

In other words, this is the KV value in the Motion Profile inner loop equation.

3.12. Proportional Gain

When used in Motion Control Mode, this value is used as the proportional gain for the position

closed-loop portion of the Motion Profile inner loop equation.

3.13. Integral Gain

When used in Motion Control Mode, this value is used as the integral gain for the position

closed-loop portion of the Motion Profile inner loop equation.

3.14. Derivative Gain

When used in Motion Control Mode, this value is used as the derivative gain for the position

closed-loop portion of the Motion Profile inner loop equation.

3.15. (Top, API-level) Buffer Count

The language-based robot APIs (C++, Java, HERO C#) utilize a “top level” buffer to hold

trajectory points as they funnel into the Talon SRX’s MPB over CAN Bus. This helps simplify

the robot application by allowing the program to one-shot generate the entire motion, buffer it at

once into the robot API, and resume to other tasks while the Talon’s MPB fills.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 12 2/08/2018

4. Theory of Operation
The intent of the motion control features of Talon is to allow the robot controller to generate and

stream the trajectory points into the Talon SRX while the Talon honors the currently-selected

control mode. This means that the Talon SRX can be in any control-mode (Percent Output for

example) while motion profile buffering occurs. When the robot controller has detected that

enough of the trajectory points have been funneled into the Talon, the robot controller can then

select the motion profile control mode, and enable the MPE by setting a ‘1’,

When the motion profile is complete, the robot controller can disconnect the firmware trajectory

buffer by setting a ‘0’ or ‘2’. A ‘0’ will signal the Talon to neutral the motor-output. A ‘2’ will

signal the Talon to “hold” the current trajectory point, however this should only be done if the

active trajectory point has a zero feed-forward velocity (last point).

The motion profile executer can be simplified as…
MotorOutput = (PositionClosedLoop0(targetPosition0) + (Kv0) x (targetVelocity0)) +

(PositionClosedLoop1(targetPosition1) + (Kv1) x (targetVelocity1))

…where targetPosition0, targetVelocity0, targetPosition1, and targetVelocity1 are

measured in Talon native units, and the motor output ranges from -1023 (full reverse) to +1023

(full forward). The feedforward gain is used for the kV constant.

The I-Zone, nominal/peak outputs, closed-loop ramping, and allowable closed-loop error signals

are all in effect. More information on how these signals impact the motor-response can be

found in the Talon SRX Software Reference Manual.

https://github.com/CrossTheRoadElec/Phoenix-Documentation/blob/master/Talon%20SRX%20Victor%20SPX%20-%20Software%20Reference%20Manual.pdf

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 13 2/08/2018

5. New Motion Profile API

5.1. New Motion Profile API – LabVIEW

The only additional VIs necessary for Motion Profile are…

CTRE_Phoenix_MotorControl_PushMotionProfileTrajectory.vi CTRE_Phoenix_MotorControl_ProcessMotionProfileBuffer.vi

These can accessed through the closed-loop -> Motion Profile Palette in LabVIEW

Along with that, you will want to set the global trajectory duration, and get the status of the profile with

these VI’s

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 14 2/08/2018

5.2. New Motion Profile API – Java

Motion Profile Status (MPB and MPE status) can be polled with this method.

The hasUnderrun flag can be polled and cleared using these functions. Replace the

instrumentation line with your application’s handler or print statement.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 15 2/08/2018

Motion profile trajectory points can be cleared and pushed with these functions…

Process function should be called periodically at a rate faster than the profile execution.

Controlling the Motion Profile Executer can be done by using the set method with the Motion

Profile Control mode selected

6. Software Integration Steps
This section describes the necessary pieces for leveraging the motion profile control mode of

the Talon SRX. The sections below reference code segments from the LabVIEW and Java

code examples, which are available for download (see Section 7). Although C++ is not

referenced directly, the C++ example is line-for-line comparable to the Java example, therefore

C++ users can still follow through the sections to understand the integration requirements, and

to learn how the C++ Motion Profile Example works.

6.1. Test Gamepad

The first step is to check the axis of the gamepad is functional and configured in the correct

direction. This is done by ensuring the robot is disabled, and moving the gamepad’s desired

stick to its extremities. While doing this, look at the Driver Station’s USB devices under the 4th

tab, and check that the gamepad’s values are changing as expected.

6.2. Direct Drive the Talon SRX and Check Sensor

The next step is to ensure that the Talon’s sensor is functional and is in-phase with motor. The

simplest method to do this is to directly control the motor-output of the Talon in Percent Output

(or similar) mode. Select the sensor programmatically and drive the Talon with positive motor

output (green Talon LEDs) while measuring the sensor position and velocity. If the Talon’s

selected sensor position is not moving in a positive direction, then use the robot API to

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 16 2/08/2018

reverse the sensor phase (see “Sensor phase and why it matter” in the Phoenix

Documentation).

While driving the mechanism

ensure…

• The position increases with positive

output and…

• That there are no strange or

erroneous samples. Remember, a

motion profile executer is only as

good as the sensor!

• Then measure the speed of the

sensor at a given output (100% or

approximately the max motor-output

expected to use).

In this example, we see at 100% motor output, the sensor’s measured velocity is 9323 native

units per 100ms.

The referenced C++, Java, and LabVIEW examples (available on GitHub) all provide a method

to directly drive the Talon for the purpose of checking sensor direction and sampling the velocity

and motor output.

6.2.1. Direct Drive the Talon SRX and Check Sensor - Java

In the Java example, we accomplish this by entering Percent Output Control Mode when

button5 is let go (motion profile is not activated).

https://github.com/CrossTheRoadElec/Phoenix-Documentation#sensor-phase-and-why-it-matters

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 17 2/08/2018

By using the left gamepad Y-axis, we can drive the mechanism while measuring the velocity.

6.3. Measure Peak RPM to Calculate F-gain

Using the values measured in Section 6.1, we can calculate our F-gain.

The example measurement is at 100% motor output, the sensor’s measured velocity is 9323

native units per 100ms.

Now let’s calculate a Feed-forward gain so that 100% motor output is calculated when the

requested speed is 9323 native units per 100ms.

F-gain = (100% X 1023) / 9323

F-gain = 0.109728

Let’s check our math, if the target speed is 9326 native units per 100ms, Closed-loop output will

be (0.109728 X 9323) => 1023 (full forward).

Now by applying this F-gain, our Talon

can perform the velocity feed-forward

portion of the motion profile inner-loop

correctly.

Next we will set the calculated gain. This can also be done in the roboRIO web-based

configuration or programmatically (example here is for Java). See section 12.1 in Talon SRX

Software reference manual for how to programmatically set gains in all languages.

A similar approach can be used for calculating the F-gain on the outer loop.

6.4. Generating the trajectory points

Trajectory points can be generated using a number of techniques (trapezoidal, s-curve, etc.).

An excel sheet is provided to perform this generation to get started. “Motion Profile

Generator.xlsx” can be downloaded at…

http://www.ctr-electronics.com/talon-srx.html#product_tabs_technical_resources

…and is available at our GitHub account.

Of course many users will choose to utilize their own motion profile generators, which is

acceptable as the trajectory point requirements are meant to be generic.

Opening this Excel file, we see the following view in the first sheet.

http://www.ctr-electronics.com/talon-srx.html%23product_tabs_technical_resources

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 18 2/08/2018

The parameters (green cells in file) to configure are…

• Vprog: This is the maximum target velocity in rotations per second. (Note if your desired

max speed is in RPM, you must multiply by 60).

• Dist: The final target position to servo to in rotations.

• T1 and T2: These are the acceleration time constants. By tweaking T1, you can control

how much of a ramp-up there is until reaching the peak velocity. By tweaking T2, you

can control how much rounding there is during the transition between the ramp and the

peak velocity. Watch the blue velocity curve and observe how it changes a T1 and T2

are modified.

• Itp: The duration of each trajectory point. Default is 10ms per point. This effectively

determines how resolute each trajectory point is. Regardless of this value however, the

Talon will perform the motion profile inner loop every 1ms.

When the curve seems reasonable, the generated trajectory points are serialized a number of

ways.

TIP: if this profile is for drivetrain and you know what the max acceleration is before wheel-slip,

you can tweak T1 and T2 until the values under the acceleration column are below your max

acceleration.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 19 2/08/2018

6.4.1. Using a CSV File (for LabVIEW)

The CSV tab can be used to copy

the values into a CSV file, which

could then be placed into a

filesystem if the robot controller

supports it.

The roboRIO, for example, could

read the CSV from its filesystem

easily using the LabVIEW

Only copy to the final point, avoid copying blank

lines.

The cells can then be pasted into a simple text file and

saved as a csv.

Access over FTP can be

done with Windows

Explorer, or your

favorite FTP client.

6.4.2. Using an array in a script language. (C++, Java, HERO C#, etc.).

The supplemental sheets will create a double-precision array (N X 3) where each row

represents a trajectory point, for a total of N trajectory points. For each row, the first cell is the

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 20 2/08/2018

position in rotations, the second cell is the velocity in RPM, and the third parameter is

durationMs (though this could be optimized out as this is generally constant).

Here is an example of the

“CopyJava” tab, which

produces a Java-style

array which can be

copied into an FRC Java

application.

6.5. Sending the trajectory points

The robot API includes functions to clear and push trajectory points into the Talon. The status

can be polled periodically to determine if enough trajectory points have been buffered to start

the motion profile.

If the motion profile is large or if the motion profile needs to start quickly (before buffering fills

Talon completely), the application should set the process periods to keep pace with the rate of

the motion profile. In other words, if your profile has trajectory points that have 10ms durations,

then the application task that processes the profile should process at least as fast. A

conservative recommendation is to process at half the period (so twice as fast).

6.5.1. Sending the trajectory points – Java

For example, this routine takes the double-array of trajectory points and passes it into the Talon object.

The routine clearMotionProfileHasUnderRun() is called first just in case we are interrupting a

previous MP. Then pushMotionProfileTrajectory() is called once per point. These functions

return immediately as the points are stored in the RIO initially. This buffer is referred to as the “Top-

level” or API-level buffer.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 21 2/08/2018

If the profile is very large (2048 points or more) the function may return a nonzero error code. In

which case caller can periodically call pushMotionProfileTrajectory () to stream the profile into

the API, or use larger trajectory point durations, or modifying the library to increase the capacity.

Periodic calls to processMotionProfileBuffer() then empty the data points into the Talon’s

low-level (firmware) buffer. For this reason, this routine should be called quickly enough to keep

pace with the execution of the

profile, if the MP is firing before

buffering is finished.

A conservative approach is to call

the routine twice as fast as the MP.

For example, if the MP uses 10ms

trajectory points, therefore the

notifier task that calls

processMotionProfileBuffer()

is set to fire every 5ms to ensure it

has sufficient opportunity to funnel

trajectory points into the Talon.

Typically, this can be done by

creating a thread or task that calls

the

processMotionProfileBuffer()

member function of the TalonSRX

object.

The function is re-entrant and does not require any “locking” strategy.

Here’s where the period is set for our notifier. To be conservative, the transmit rate of the

motion profile control CAN frame is set to match to ensure the communication is optimal.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 22 2/08/2018

The benefit of this is that the precision of the notifier isn’t a factor in how smooth the motion

profile executes. This means spikes in CPU don’t adversely affect the motion profile.

6.5.2. Sending the trajectory points – LabVIEW

Similar to the API in the script-based languages, LabVIEW has a method for controlling the

Motion Profile Control Frame Rate and a method to schedule tasks in a period fashion.

The Enhanced Motor Controller - Control Frame Rate

VI is used to change the motion profile control frame

rate from the default value of 10ms to 7ms.

In the LabVIEW example, the Periodic Tasks VI is used for motion-profile tasking. It is ideal

since it is timed and runs in parallel to the rest of robot application.

Here is a case structure that conditionally inserts the next trajectory point into in the CAN control

frame if there is room for the next point, and if the next point is available.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 23 2/08/2018

6.6. Activating the Motion Profile

Once the robot application has confirmed that there are points in the Talon buffer, the

application can “fire” the buffered Motion Profile by setting the Talon output to ‘1’.

Care should be taken to not activate the executer until the robot application has confirmed there

are trajectory points in the firmware buffer by polling the MPB status.

6.6.1. Activating the Motion Profile – Java

Pass a ‘1’ or SetValueMotionProfile.Enable to signal the Talon to start executing the

buffered profile.

6.6.2. Activating the Motion Profile – LabVIEW

The motion profile executer can be controlled with the set value parameter of the Change Mode

VI, or using the general motor set VI. In this example the control mode and Set Value are set at

the same time.

Care should be taken to only “hold” the active trajectory point if target velocity is zero.

6.7. Checking the Motion Profile Status

Robot application should check on the MP’s status to determine if/when the MP is finished.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 24 2/08/2018

6.7.1. Checking the Motion Profile Status – LabVIEW

In LabVIEW, the status signals relating to Motion Profile are available in the general Get

Profile Status VI. Use the “Unbundle By Name” object.

6.7.2. Checking the Motion Profile Status – Java

See Section 5.2 for example function call. Checking the status is necessary for…

• Determining that a sufficient number of trajectory points are in the MPB before activating

the MPE.

• Determining when the MPE is in enable/disable/hold, after robot application has

changed the desired state using set().

• Confirming MPE is in disable/hold before calling the clear and push routines for buffering

trajectory points for the next motion profile. It is important to confirm that MPE is no

longer interacting with MPB, before inserting new points into the MPB.

6.8. Complete Example Overview

6.8.1. Complete Example – LabVIEW

The LabVIEW example has all of the software integration steps completed in the Periodic Tasks

VI. See Section 7 for download link.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 25 2/08/2018

In Begin.vi, the Talon SRX reference is created with a CAN Device ID of ‘0’. See Talon SRX

Software Reference Manual for more information on CAN Device IDs.

The string “DUT” is used to reference the Talon

SRX. DUT stands for “Device Under Test”,

however most developers name the motor

controller to something more specific: “arm,

shooterWheel, LeftFrontDrive, etc.).

Instructions for testing are on the front-panel (below).

For example, manual control of the Talon can be be done by holding down Button 1 and using

the left y-axis. If using another input-device, generally the “first” y-axis will control the Talon

SRX.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 26 2/08/2018

Watching the intrumented signals on the left side while testing the example can also help users

learn more about how this feature works.

6.8.2. Complete Example – Java

See Section 7 for download link. The project primary depends on two classes.

MotionProfileExample implements the integration steps in Section 6, including polling motion

profile status and deciding when to “fire” the Motion Profile.

Robot.java creates a MotionProfileExample object and uses startMotionProfile() and

reset() to signal the MotionProfileExample object what to do.

Be sure to look at the Output window to watch the changes in state of the Motion Profiler

Executer.

Note that MotionProfileExample doesn’t actually change the control mode or the set value.

That is done in Robot.java so that logic for changing modes can be done in one place.

The TalonSRX is created in Robot.java and uses the specified device ID under the Constants

class. See Talon SRX Software Reference Manual for more information on CAN Device IDs.

6.8.3. Complete Example – C++

See Section 7 for download link. The project primary depends on two classes.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 27 2/08/2018

MotionProfileExample implements the integration steps in Section 6, including polling motion

profile status and deciding when to “fire” the Motion Profile.

Be sure to look at the Output window to watch the changes in state of the Motion Profiler

Executer.

Robot.cpp creates a MotionProfileExample object and uses startMotionProfile() and

reset() to signal the MotionProfileExample object what to do.

Note that MotionProfileExample doesn’t actually change the control mode or the set value.

That is done in Robot.java so that logic for changing modes can be done in one place.

The TalonSRX is created in Robot.cpp and uses the ID specified in constants.h. See Talon

SRX Software Reference Manual for more information on CAN Device IDs.

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 28 2/08/2018

7. Download the Examples
Generally speaking, all source and generator files can be found in

https://github.com/CrossTheRoadElec under “Phoenix-Examples-Languages” or “Phoenix-

Examples-LabVIEW”.

7.1. Download a file “as is” from GitHub

When reviewing a non-

text based file, press

the “Raw” button to

download the file as-is.

https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 29 2/08/2018

7.2. Download links

These links are tested at the time of writing. However, these resources can also be found by

navigating through the CTRE GitHub account.

Motion Profile Generator Excel Sheet
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/blob/master/Java/MotionProfile/Motion%20Profile%20Generator.xlsx

Java Motion Profile Example
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java/MotionProfile

LabVIEW Motion Profile Example
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW/tree/master/MotionProfile

C++ Motion Profile Example
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/C%2B%2B/MotionProfile

7.3. Example – HERO C#

For HERO development board

users, an example Motion Profile

project can be found after installing

the HERO-SDK-Installer and using

the default Visual Studio HERO

example project.

Example Visual Studio Project is
also available at the CTRE GitHub
Account.

8. Suggested Testing / General Recommendations
Additionally, testing is recommended to ensure robot responds in an expected fashion if the

Talon motor controller is power cycled or disconnected from robot controller during a motion

profile. The motion profile control mode is unique in that information is streamed to a motor

controller, so be sure to test your robot’s response to intermittent connections where the stream

is momentarily or permanently severed (disconnected CAN wires or unpowered Talon).

As with all advanced control modes, it’s often helpful to have an override mode to allow the

human operator to manually control a mechanism (sensor failure or alignment, sensor

disconnect, mechanical failures, gear-teeth skipping, software issue, etc.).

Having a method to “re-zero” or “re-tare” your sensors can also be helpful (see Section 16.19 in

Talon Software Reference Manual).

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/blob/master/Java/MotionProfile/Motion%20Profile%20Generator.xlsx
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java/MotionProfile
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW/tree/master/MotionProfile
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/C%2B%2B/MotionProfile

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 30 2/08/2018

9. Troubleshooting Tips and Common Questions

9.1. Where can I find the other resources mentioned? Software Reference

Manual, Motion profile generator, example source?

Under the “Tech Resources” tab on the Talon SRX product page.

http://www.ctr-electronics.com/talon-srx.html#product_tabs_technical_resources

Programming examples are mentioned in Section 7.

9.2. What motor controllers, which firmware is required for this feature?

This document assumes that you are using Talon SRX wired to CAN Bus.

The firmware version requirements are…

FRC: equal to or greater than 3.0.

Non-FRC or general use: equal to or greater than 10.0.

http://www.ctr-electronics.com/talon-srx.html%23product_tabs_technical_resources

Talon SRX Motion Profile Reference Manual 2/08/2018

Cross The Road Electronics Page 31 2/08/2018

10. Functional Limitations

10.1. C++ References missing in document.

Because of how similar the C++ and Java examples are, this document references the Java

example only. However, the C++ example is nearly-line-for-line identical outside of the

obvious language differences between C++ and Java. The C++ example works identically to

the Java example, therefore following the Java document references should be sufficient for

C++ users.

11. Revision History

Rev

Date

Description

1.0 19-Jan-2016 -Initial Release for 2016 FRC Season

2.0 08-Feb-2018 -Update for Phoenix Framework and 2018 Season

	1. What is the Motion Profile Control Mode?
	1.1. What is the benefit?

	2. Functional Diagram
	3. Signal List and Terms
	3.1. Motion Profile Buffer (MPB)
	3.2. Motion Profile Executer (MPE)
	3.3. Global Trajectory Point Duration
	3.4. Trajectory Point
	3.4.1. The Last Trajectory Point
	3.4.2. Trajectory Point Duration (Milliseconds)
	3.4.3. Trajectory Point Velocity
	3.4.4. Trajectory Point Position
	3.4.5. Trajectory Point Heading (Degrees)
	3.4.6. Trajectory Point Profile Slot Select 0
	3.4.7. Trajectory Point Profile Slot Select 1
	3.4.8. Trajectory Point Is Last
	3.4.9. Trajectory Point Zero Position

	3.5. Motion Profile Set Value (Set Output, or Output Type)
	3.6. Active Trajectory
	3.6.1. Active Trajectory Is Valid
	3.6.2. Active Trajectory Velocity
	3.6.3. Active Trajectory Position
	3.6.4. Active Trajectory Heading
	3.6.5. Active Trajectory Profile Slot Select 0
	3.6.6. Active Trajectory Profile Slot Select 1
	3.6.7. Active Trajectory Is Last
	3.6.8. Active Trajectory Zero Position

	3.7. Is Underrun
	3.8. Has Underrun
	3.9. (Bottom, Firmware-level) Buffer Count
	3.10. (Bottom, Firmware-level) Buffer Is Full
	3.11. Feed-Forward Gain
	3.12. Proportional Gain
	3.13. Integral Gain
	3.14. Derivative Gain
	3.15. (Top, API-level) Buffer Count

	4. Theory of Operation
	5. New Motion Profile API
	5.1. New Motion Profile API – LabVIEW
	5.2. New Motion Profile API – Java

	6. Software Integration Steps
	6.1. Test Gamepad
	6.2. Direct Drive the Talon SRX and Check Sensor
	6.2.1. Direct Drive the Talon SRX and Check Sensor - Java

	6.3. Measure Peak RPM to Calculate F-gain
	6.4. Generating the trajectory points
	6.4.1. Using a CSV File (for LabVIEW)
	6.4.2. Using an array in a script language. (C++, Java, HERO C#, etc.).

	6.5. Sending the trajectory points
	6.5.1. Sending the trajectory points – Java
	6.5.2. Sending the trajectory points – LabVIEW

	6.6. Activating the Motion Profile
	6.6.1. Activating the Motion Profile – Java
	6.6.2. Activating the Motion Profile – LabVIEW

	6.7. Checking the Motion Profile Status
	6.7.1. Checking the Motion Profile Status – LabVIEW
	6.7.2. Checking the Motion Profile Status – Java

	6.8. Complete Example Overview
	6.8.1. Complete Example – LabVIEW
	6.8.2. Complete Example – Java
	6.8.3. Complete Example – C++

	7. Download the Examples
	7.1. Download a file “as is” from GitHub
	7.2. Download links
	7.3. Example – HERO C#

	8. Suggested Testing / General Recommendations
	9. Troubleshooting Tips and Common Questions
	9.1. Where can I find the other resources mentioned? Software Reference Manual, Motion profile generator, example source?
	9.2. What motor controllers, which firmware is required for this feature?

	10. Functional Limitations
	10.1. C++ References missing in document.

	11. Revision History

