Talon SRX Motion Profile Reference Manual 2/08/2018

Talon SRX Motion Profile
Reference Manual

Revision 2.0

LR

EI.EI:TEI:INII:E

Cross The Road Electronics

www.ctr-electronics.com

Cross The Road Electronics Page 1 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

Table of Contents

1. What is the Motion Profile Control MOAE?coevviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 6
1.1, Whatis the DENEit? ..o 6
2. FUNCHONAI DIBGIAIM ... e aaeeas 7
G T o F= U IS = U To I = 1 1 P SSRUPPPUPP 7
3.1. Motion Profile BUfer (MPB)ccouiiiiiiiiiiiii e 7
3.2. Motion Profile EXecuter (MPE)c.oooiiiiiii e e e e aaaees 7
3.3. Global Trajectory Point DUFALIONuuuiiiiieeiiieeiiiie et e e e e e e e e eeanees 7
3.4, TraJeCtOry POINT......coiiiiiiiiiiieee e 7
3.4.1. The Last TraJeCtory POINT...........ciiiiiiiiiiieiee et e e e e e e 7
3.4.2. Trajectory Point Duration (MilliISECONAS)ccooiiiieeeeee e 8
3.4.3. Trajectory POINt VEIOCILYouuuiiiiiii it e e e e e e e 8
3.4.4. Trajectory POINT POSIIONcoooiiiiieeeeeeee e 8
3.4.5. Trajectory Point Heading (DEQIreeS).......ccuuuuiiiiiieeiiiiiiiiiiee e eee et e e 8
3.4.6. Trajectory Point Profile SIot SeleCt O.........cccoeiiiiiiiieeeee 8
3.4.7. Trajectory Point Profile SIot SeleCt L.........ouiiiiiiiiiiieicce e 8
3.4.8. Trajectory POINLIS LAST.......ccouiiiiiiii it e e e e e e 8
3.4.9. Trajectory POINt Z&ro POSITIONcccooii oo 8
3.5. Motion Profile Set Value (Set Output, or QULPULt TYPE)cooiiiiiiiiiiie e, 9
3.6, ACHVE TIAJECIONY ..coeiiiiiiiieiieeee et 9
3.6.1. Active Trajectory IS Validcoeiiiiiiiiiiie et 9
3.6.2. ACHIVE TrajeCtory VEIOCITYccoeeeeeeeeeeeee e 9
3.6.3. Active TrajeCctory POSIION............ceiiiiiiii e 9
3.6.4. Active Trajectory HEadingccooeieiioeeeeee e 9
3.6.5. Active Trajectory Profile SIot Select Ouceeiiiiiiiiicie e, 9
3.6.6. Active Trajectory Profile Slot Select 1oeiiiiiiiiiiiie e, 10
3.6.7. ACHVE TrajeCtory IS LaSt.....ccccoeiiieeeeeeee e 10
3.6.8. Active Trajectory Zero POSItIONciiiiiiiii i ee i et e e e e et e e e eaa e eeens 10
T A (= [T [T o U o SRR 10
3.8, HAS UNUEITUN ..o 10
3.9. (Bottom, Firmware-level) Buffer COUNt............cooviiiiiiiiiiiiiiieeeeee 10
3.10. (Bottom, Firmware-level) Buffer IS FUlloo i, 10

Cross The Road Electronics Page 2 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

3.11. FEEA-FOIWAIT GaINeuiiiiiiiiiiiiiiiiieieiee it sbsnnnnnnnne 11
3.12. o] 0o] gio] aT= U €= 1] o PP 11
3.13. INEEOIAL GAIN.....eeeeeieiieeee ettt 11
3.14. DEIVALIVE GaIN ...t e e e e e e e e e e e e e e s annnne s 11
3.15. (Top, API-level) BUFfer COUNL...........uuiiiiiiiiiiiiiiiiiiii e 11
4. ThEOry Of OPEIALIONccoe i 12
5. New Motion Profil@ AP ... e 13
5.1. New Motion Profile APl — LADVIEWcooiiiiiiiiiiiiieeeee 13
5.2. New Motion Profile APl — JAVA..........ouiiiiiiiiiiiiiiiii e 14
6. SOftWare INTEGratioN STEPSo i 15
6.1. Direct Drive the Talon SRX and Check SENSOr............cccciiiiiiiiiiiiiiiiieeee e 15
6.1.1. Direct Drive the Talon SRX and Check Sensor - Javaeevvemmiimeiiiiinnnnnnns 16

6.2. Measure Peak RPM to Calculate F-gainocouiiiiiiiiiiiieiiee e 17
6.3. Generating the trajeCtory POINTSccovviiiiiiiiiii e 17
6.3.1. Using a CSV File (fOr LADVIEW)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieieesenesseeneenene 19
6.3.2. Using an array in a script language. (C++, Java, HERO C#, etC.).ccevvvvvnnnnnn. 19

6.4. Sending the trajeCtory POINTS.........cciiiiiiiiiiii e 20
6.4.1. Sending the trajectory poINtS — JAVAcuuuiiiiiieeiiiiiiee e 20
6.4.2. Sending the trajectory points — LADVIEWuuuiieees 22

6.5. Activating the Motion Profil@............oooiiii it 23
6.5.1. Activating the Motion Profile — JAVauuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeees 23
6.5.2. Activating the Motion Profile — LabVIEW ..., 23

6.6. Checking the Motion Profile Status ... 23
6.6.1. Checking the Motion Profile Status — LAbVIEWuuuiiiiiimiiiiiiiiiiiiiiiiiiiiiiinnns 24
6.6.2. Checking the Motion Profile Status — Java............ccoeuviiieeiiieeiiieicee e, 24

6.7. Complete EXample OVEIVIEWccoviiiiiiiiiiiiiiiieeeeee e 24
6.7.1. Complete Example — LabVIEW ... 24
6.7.2. Complete EXamPIE — JAVAuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiibiibee bbb 26
6.7.3. Complete EXample — Ct .o 26

7. Download the EXAMPIES ... 28
7.1. Download a file “a@s is” from GitHUD ... 28
7.2, DoOWNIoad lINKS......cooiiiiiiiiii 29
7.3, Example —HERO CHcoooiiiiiiiiii 29

Cross The Road Electronics Page 3 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

8. Suggested Testing / General Recommendationsccooveeeeieeieieee e 29
9. Troubleshooting Tips and CommOoN QUESHIONScceeiiiiiiiiiiieie e 30
9.1. Where can | find the other resources mentioned? Software Reference Manual, Motion
profile generator, eXamPle SOUICE?uuiii i i e e e e e e e e e e e e e e e e a e e eaes 30
9.2. What motor controllers, which firmware is required for this feature? 30
O ¥ T iTo) = L I 41 = LT LN 31
10.1. C++ References missing in dOCUMENL.ooiiiiiiiiiiiiiiii e 31
B O oY1= [0 T 11 (o Y/ 31

Cross The Road Electronics Page 4 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation
possible to ensure successful use of your CTRE products. To this end, we will
continue to improve our publications, examples, and support to better suit your
needs.

If you have any questions or comments regarding this document, or any CTRE
product, please contact support@crosstheroadelectronics.com

To obtain the most recent version of this document, please visit
www.ctr-electronics.com.

Cross The Road Electronics Page 5 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

1. What is the Motion Profile Control Mode?

The Talon SRX supports a number of control modes...
e Percent Output
o Position Closed-Loop
e Velocity Closed-Loop
e Current Closed-Loop

These modes are documented in the Talon SRX Software Reference Manual and allow a
“‘Robot Controller” to specify/select a target value to meet. The target can simply be the percent
output motor drive, or a target current-draw. When used with a feedback sensor, the robot
controller may also simply set the target position, or velocity to servo/maintain.

However, for advanced motion profiling, the Talon SRX additionally supports a mode whereby
the robot controller can stream a sequence of trajectory points to express an entire motion
profile.

Each trajectory point holds the desired velocity, position, and time duration to honor said point
until moving on to the next point. These points can be sent to the Talon before executing the
motion profile ensuring that enough points are buffered for smooth transitions.

Alternatively, the trajectory points can be streamed into the Talon as the Talon is executing the
profile, so long as the robot controller sends the trajectory points faster than the Talon
consumes them. This also means that there is no practical limit to how long a profile can be.

1.1. What is the benefit?
Leveraging the Motion Profile Control Mode in the Talon SRX has the following benefits...
e Direct control of the mechanism throughout the entire motion (as opposed to a single
PID closed-loop which directly servos to the end target position).
e Accurate scheduling of the trajectory points that is not affected by the performance of the
primary robot controller.
o Improved repeatability despite changes in battery voltage.
¢ Improved repeatability despite changes in motor load.
e Provides a method to synchronously gain-schedule.

Additionally, this mode could be used to schedule several position servos in advance with

precise time outs. For example, one could map out a collection of positions and timeouts, then
stream the array to the Talon SRX to execute them.

Cross The Road Electronics Page 6 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

2. Functional Diagram

Below is a simplified functional diagram of the motion profile firmware in the Talon SRX.

Trajectory Point

ActTraj_IsValid

Motion Profile Executer
(MPE)
(holds the Active Trajectory)

Pop First
Point

‘B Duty Cycle
CAN
Trajectory Point

Timed Out Applied
0— Motor

Output

IsUnderrun
HasUnderrun

Count

BufferisFull (applied) OutputType

ActTraj_IsValid
Active Trajectory

3. Signal List and Terms

3.1.
The firmware buffer in the Talon SRX. The MPB can hold up to 128 trajectory points at once
(with the current firmware, see Section 9.2 for requirements).

3.2. Motion Profile Executer (MPE)

The Motion Profile Executer is the firmware that calculates the motor-output based on the active
trajectory point. It includes two closed loops, an inner and an outer. In both loops, the patrtial
output is calculated and is updated every 1ms. The Inner loop uses the feedback device & gains
from PID index 0, the Outer loop uses the feedback device & gains from PID index 1. The motor
output is the sum or difference of the two loops. The MPE holds one trajectory point at a time.
Should the Talon Motion Control features be activated when there is no trajectory point buffered
into the MPE, the motor output will be neutral.

3.3.

The global trajectory point duration is a parameter that allows the user to specify the normal
point duration of a motion profile. The user can then choose to add more time to any specific
point by setting that point’s duration.

3.4.
This term refers to the trajectory point sent to the Talon SRX buffer. This is not the point
currently used for calculating the motor output.

3.4.1. The Last
When generating the trajectory points, the final trajectory point in the profile is referred to as the
“Last Trajectory Point”. This point typically has the following properties...

- The velocity to feed-forward is set to zero.

Cross The Road Electronics Page 7 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

- The “Is Last” flag is set to “true”.
This ensures that when the MPE processes the last point, it will hold position indefinitely (or until
the robot controller decides the next course of action).

3.4.2. Duration (Milliseconds)

The extra time to servo this trajectory point in milliseconds. This adds to the global Trajectory
Point Duration, with the options of +Oms, +5ms, +10ms, +20ms, +30ms, +40ms, +50ms, and
+100ms.

3.4.3. Velocity
This is the velocity to feed-forward when this trajectory point is loaded into the MPE.

3.4.4. Position
This is the position to target for the PID closed loop portion of the MPE inner loop when this
trajectory point is loaded into the MPE.

3.4.5. Heading (Degrees)
This is the heading to target for the PID auxiliary closed loop portion of the MPE outer loop
when this trajectory point is loaded into the MPE.

3.4.6. Profile Slot Select 0

Selects which slot to pull the closed-loop gains for Position when the MPE processes this point.
Talon persistently stores four sets of closed-loop parameters. This allows for atomic switching
between four unique sets of gain-constants and I-Zone.

3.4.7. Profile Slot Select 1

Selects which slot to pull the closed loop gains for Heading when the MPE processes this point.
Talon persistently stores two sets of closed loop parameters for Heading closed loop. This
allows for atomic switching between two unique sets of gain-constants and I-Zone

3.4.8. Is Last

Set to “true” if trajectory point is the final point of the motion profile. This signals the MPE to
continue to servo this point even after its time duration expires. Be sure to zero the position of
this trajectory point so that MPE will closed-loop to the final intended position.

3.4.9. Zero Position

If a trajectory point has this flag set, the MPE will zero the position value of the selected sensor
when this trajectory point is processed. Typically, this would be done only with the first
trajectory point of the motion profile. The goal is to clear the position so that the position values
of the following trajectory points are relative to the start position of the mechanism.

The generated trajectory points could be calculated to not require re-zeroing the sensor. This

flag merely provides the option to express a profile relative to the current physical position of the
mechanism.

Cross The Road Electronics Page 8 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

3.5.
The set-value is interpreted as follows:
0 - Motor output is neutral.

1 - Motor output is driven by the MPE. MPE will pop the “first” point from the MPB. If the
MPE does not have a point (is empty) Motor output is neutral and “Is Underrun” is set.

2 - Motor output is in “hold”. The active trajectory point inside the MPE will be driven
indefinitely (while set-value is ‘2" and control mode is “Motion Profile”). This is useful
when a profile has finished and the user needs to disconnect the MPE from the MPB to
begin buffering the next action, meanwhile the MPE will continue to servo/drive the
loaded point.

This set-value is typically only useful when the “Last” trajectory point has been reached,
which typically has a target velocity of ‘0’, and simply will servo/maintain the final
position.

3.6. Active Trajectory
The active trajectory is the trajectory point loaded into the MPE. This holds the velocity,
position, and flags used by the MPE to calculated the motor output.

3.6.1. Active Trajectory Is Valid

Since it is possible for the MPE to be “empty”, there must be a flag to instrument this. For
example, if the robot controller sends a nonzero when there are no
trajectory points buffered, this will cause the MPE to be active when no trajectory point is
available to shift into the MPE. When this happens, this flag will be false, and motor output will
be neutral.

When reading the other member signals of Active Trajectory, this flag should be checked first.

3.6.2. Active Trajectory Velocity
The velocity the MPE will feed-forward if activated.
Only valid if “Active Trajectory Is Valid” is true.

3.6.3. Active Trajectory Position
The position the MPE will target if activated.
Only valid if “Active Trajectory Is Valid” is true.

3.6.4. Active Trajectory Heading
The heading the MPE will target if activated
Only valid if “Active Trajectory Is Valid” is true.

3.6.5. Active Trajectory Profile Slot Select O
The selected slot that the MPE will pull closed-loop parameters from for the inner loop if
activated.

Cross The Road Electronics Page 9 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

Only valid if “Active Trajectory Is Valid” is true.

3.6.6. Active Trajectory Profile Slot Select 1

The selected slot that the MPE will pull closed-loop parameters from for the outer loop if
activated.

Only valid if “Active Trajectory Is Valid” is true.

3.6.7. Active Trajectory Is Last

The “Is Last” signal of the active trajectory point currently in the MPE. MPE will continue to
servo this point indefinitely, allowing robot application to prepare next profile or change modes.
Only valid if “Active Trajectory Is Valid” is true.

3.6.8. Active Trajectory Zero Position
The “Zero Pos” signal of the active trajectory point currently in the MPE.
Only valid if “Active Trajectory Is Valid” is true.

3.7. Is Underrun

If the MPE is ready to process a new active trajectory point, but one is not available, this flag is
set. The underrun behavior of the Talon depends on which three situations caused the
underrun...

¢ Robot application has signaled MPE to start, but there is no buffered trajectory point to
start with. Motor-output is neutral until a point is available.

e Robot application has signaled MPE to hold, but there is no active trajectory point in the
MPE. Motor-output is neutral until a point is available.

o During the execution of a profile, the MPE timed out the active trajectory point, and was
ready for the next point, but one was not available (MPB was empty). When this
happens MPE will continue to use the active trajectory point until a new point is available
in the buffer. In other words, MPE will not release the active trajectory point if the next
point is not available.

All three situations are caused by the robot controller not providing trajectory points to keep
pace with the execution, or enabling the MPE before enough trajectory points are buffered.

This flag is automatically cleared when the problem condition is resolved.

3.8. Has Underrun

When Is Underrun is set, Has Underrun is also set. However, this flag only is cleared by the
robot application using the robot API. This ensures the robot application can poll for underrun
behavior infrequently without risking missing intermittent buffer underruns.

3.9. (Bottom, Firmware-level) Buffer Count
The number of trajectory points buffered in the MPB.

3.10. (Bottom, Firmware-level) Buffer Is Full
Flag indicating the firmware trajectory buffer is full in the MPB.

Cross The Road Electronics Page 10 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

3.11. Feed-Forward Gain
When used in Motion Control Mode, this value is used to feed-forward the target velocity gain.
In other words, this is the Kv value in the Motion Profile inner loop equation.

3.12. Proportional Gain
When used in Motion Control Mode, this value is used as the proportional gain for the position
closed-loop portion of the Motion Profile inner loop equation.

3.13. Integral Gain
When used in Motion Control Mode, this value is used as the integral gain for the position
closed-loop portion of the Motion Profile inner loop equation.

3.14. Derivative Gain
When used in Motion Control Mode, this value is used as the derivative gain for the position
closed-loop portion of the Motion Profile inner loop equation.

3.15. (Top, API-level) Buffer Count

The language-based robot APIs (C++, Java, HERO C#) utilize a “top level” buffer to hold
trajectory points as they funnel into the Talon SRX’s MPB over CAN Bus. This helps simplify
the robot application by allowing the program to one-shot generate the entire motion, buffer it at
once into the robot API, and resume to other tasks while the Talon’s MPB fills.

Cross The Road Electronics Page 11 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

4. Theory of Operation

The intent of the motion control features of Talon is to allow the robot controller to generate and
stream the trajectory points into the Talon SRX while the Talon honors the currently-selected
control mode. This means that the Talon SRX can be in any control-mode (Percent Output for
example) while motion profile buffering occurs. When the robot controller has detected that
enough of the trajectory points have been funneled into the Talon, the robot controller can then
select the motion profile control mode, and enable the MPE by setting a ‘1’,

When the motion profile is complete, the robot controller can disconnect the firmware trajectory
buffer by setting a ‘0’ or '2’. A ‘0’ will signal the Talon to neutral the motor-output. A ‘2’ will
signal the Talon to “hold” the current trajectory point, however this should only be done if the
active trajectory point has a zero feed-forward velocity (last point).

The motion profile executer can be simplified as...
MotorOutput = (PositionClosedLoopO (targetPositionO) + (Kvo) x (targetVelocityO)) +
(PositionClosedLoopl (targetPositionl) + (Ky1) x (targetVelocityl))

...where targetPosition0, targetVelocity0, targetPositionl, and targetVelocityl are
measured in Talon native units, and the motor output ranges from -1023 (full reverse) to +1023
(full forward). The feedforward gain is used for the kV constant.

The I-Zone, nominal/peak outputs, closed-loop ramping, and allowable closed-loop error signals
are all in effect. More information on how these signals impact the motor-response can be
found in the Talon SRX Software Reference Manual.

Cross The Road Electronics Page 12 2/08/2018

https://github.com/CrossTheRoadElec/Phoenix-Documentation/blob/master/Talon%20SRX%20Victor%20SPX%20-%20Software%20Reference%20Manual.pdf

Talon SRX Motion Profile Reference Manual 2/08/2018

5. New Motion Profile API

5.1. New Motion Profile APl — LabVIEW
The only additional VIs necessary for Motion Profile are...

CTRE_Phoenix_MotorControl_PushMotionProfileTrajectory.vi CTRE_Phoenix_MotorControl_ProcessMotionProfileBuffer.vi

FILU

obotics Library

21 WPl Robotics Library
Third Party

] Talon SRX

Closed Loop

v .
m m . 2] Closed Loop <] Moetion Profile
HE T e M M B B
cowFis| [aLow| |seLct
"

l.

He e e

CONFIG GET ENGELE
HoTios| ACTIVE CAZG
HaGie Thia b

= E
3
v
.A. 0 e e e bic:
B -2 [SET AS TRAL HoTIoH
c 3 || [wesur| [wecun TR | | EAG,

M

Along with that, you will want to set the global trajectory duration, and get the status of the profile with
these VI's

Position (Sensor Units)

Top Buffer Remaining
durationMs Top Buffer Count
Bottorn Buffer Count

Haz Underrun?

l= Underrun?
Active Point Vahd?
Is Last?

Profile Slot Select 0

Cutput Enable
Tirme Duration (ms)
Profile Slot Select 1

Cross The Road Electronics Page 13 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

5.2. New Motion Profile APl - Java
Motion Profile Status (MPB and MPE status) can be polled with this method.

/* Get the motion profile status every loop */
_talen.getMotionProfileStatus(_status);

_status,,

activePointValid : boolean - MotionProfileStatus
btmBufferCnt : int - MotionProfileStatus
hasUnderrun : boolean - MotionProfileStatus
isLast : boolean - MotionProfileStatus
isUnderrun : boolean - MotionProfileStatus
cutputEnable : SetValueMotionProfile - MotionProfileStatus
profileSlotSelect : int - MoticnProfileStatus
profileSlotSelect] : int - MotionProfileStatus
timeDurMs @ int - MotionProfileStatus
topBufferCnt : int - MotionProfileStatus
topBufferRem : int - MotionProfileStatus
equals(Object argl) : boolean - Ohject
getClass() : Class<?> - Object

hashCode() : int - Object

notify() : void - Object

notifyAll() : void - Object

toString() : String - Object

wait() : void - Object

wait(long timeout) : void - Object

wait(long timeout, int nanes) : void - Object

Press "Ctrl+5pace

The hasUnderrun flag can be polled and cleared using these functions. Replace the
instrumentation line with your application’s handler or print statement.

/* did we get an underrun condition since last time we checked ? */
if {_status.hasUnderrun) {
/* better log it so we know about it */
Instrumentation.OnUnderrun();
lIll'*
* clear the error. This flag does not auto clear, this way we never
* miss logging it.
*/
_talen.clearMotionProfileHasUnderruni{@);

Cross The Road Electronics Page 14 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

Motion profile trajectory points can be cleared and pushed with these functions...

_talon.pushMotionProfileTrajectory (point) ;

_talon.clearMotionProfileTrajectories ()

Process function should be called periodically at a rate faster than the profile execution.

_talon.processMotionProfileBuffer () ;

Controlling the Motion Profile Executer can be done by using the set method with the Motion
Profile Control mode selected

_talon.set{ControlMode .MotionProfile, setOutput.walue);

6. Software Integration Steps

This section describes the necessary pieces for leveraging the motion profile control mode of
the Talon SRX. The sections below reference code segments from the LabVIEW and Java
code examples, which are available for download (see Section 7). Although C++ is not
referenced directly, the C++ example is line-for-line comparable to the Java example, therefore
C++ users can still follow through the sections to understand the integration requirements, and
to learn how the C++ Motion Profile Example works.

6.1. Test Gamepad
The first step is to check the axis of the gamepad is functional and configured in the correct
direction. This is done by ensuring the robot is disabled, and moving the gamepad’s desired
stick to its extremities. While doing this, look at the Driver Station’s USB devices under the 4™
tab, and check that the gamepad’s values are changing as expected.

. Team # 217

USB Order Axes Buttons POV

O:LX Axis

0 Controller (Rumble Game Dl _—
i - 1LY Axis _ L
_ Communications

2:LTrigger Robot Code

3:R Trigger Joysticks ==

4:RX Axis Rumble

No Robot

5:RY Axis Communication

6.2. Direct Drive the Talon SRX and Check Sensor

The next step is to ensure that the Talon’s sensor is functional and is in-phase with motor. The
simplest method to do this is to directly control the motor-output of the Talon in Percent Output
(or similar) mode. Select the sensor programmatically and drive the Talon with positive motor
output (green Talon LEDs) while measuring the sensor position and velocity. If the Talon’s
selected sensor position is not moving in a positive direction, then use the robot API to

Cross The Road Electronics Page 15 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

reverse the sensor phase (see “Sensor phase and why it matter” in the Phoenix
Documentation).

roboRIO-3539-FRC : System Configuration

While driving the mechanism

@ = | [
Ao ensure...

R ’L‘wwwwi"w Mot Lo o off S [sEM] ¢ The position increases with positive
A o oS it output and...
A, | EEER e saasa | o That there are no strange or
'I:ff:f&’imm, P o0 s e erroneous samples. Remember, a
'ﬁ.m st Pt 7o motion profile executer is only as
i T i T good as the sensor!
gl = « Then meastre the speed of the
'T.Tx (Oevee1020) sncmsoomonn sensor'at a given output (100% or
W0 o i approximately the max motor-output

A o _seadue: o 3 expected to use).

In this example, we see at 100% motor output, the sensor's measured velocity is 9323 native
units per 100ms.

The referenced C++, Java, and LabVIEW examples (available on GitHub) all provide a method
to directly drive the Talon for the purpose of checking sensor direction and sampling the velocity
and motor output.

6.2.1. Direct Drive the Talon SRX and Check Sensor - Java
In the Java example, we accomplish this by entering Percent Output Control Mode when
button5 is let go (motion profile is not activated).

/** function is called periodically during operator control */
public void teleopPeriodic() {
/* get buttons */
boolean[] btns = new boolean[_btnsLast.length];
for (int 1 = 1; i ¢ _btnslast.length; ++i)
btns[i] = _joy.getRawButton(i);

/* get the left joystick axis on Logitech Gampead */
double leftYjoystick = -1 * _joy.getY(); /* multiple by -1 so joystick forward is positive */

.I‘r*

* call this periodically, and catch the output. Only apply it if user
* wants to run MP.

*/

_example.control();

/* Check button 5 (top left shoulder on the logitech gamead). */
if (btns[5] == false) {
.I'r*
* If it's not being pressed, just do a simple driwve. This could be
* a RobotDrive class or custom drivetrain logic. The point is we
* want the switch in and ocut of MP Control mode.

*/

/* buttons is off so straight drive */
_talon.set(ControlMode.PercentOutput, left¥Yjoystick);

Cross The Road Electronics Page 16 2/08/2018

https://github.com/CrossTheRoadElec/Phoenix-Documentation#sensor-phase-and-why-it-matters

Talon SRX Motion Profile Reference Manual 2/08/2018

By using the left gamepad Y-axis, we can drive the mechanism while measuring the velocity.

6.3. Measure Peak RPM to Calculate F-gain

Using the values measured in Section 6.1, we can calculate our F-gain.

The example measurement is at 100% motor output, the sensor’'s measured velocity is 9323
native units per 100ms.

Now let’s calculate a Feed-forward gain so that 100% motor output is calculated when the
requested speed is 9323 native units per 100ms.

F-gain = (100% X 1023) / 9323
F-gain = 0.109728

Let’s check our math, if the target speed is 9326 native units per 100ms, Closed-loop output will
be (0.109728 X 9323) => 1023 (full forward).

_talon.config kF(@, @.1897, Constants.kTimeowtMs); Now by applying this F-gain, our Talon

_talon.config_kP({@, ©.8, Constants.kTimeoutMs); can perform the velocity feed-forward

_talon.config_kI{@, @.8, Constants.kTimeoutMs); . . _

_talon.config kD(@, [p.@, Constants.kTimeoutMs); portion of the motion profile inner-loop
correctly.

Next we will set the calculated gain. This can also be done in the roboRIO web-based
configuration or programmatically (example here is for Java). See section 12.1 in Talon SRX
Software reference manual for how to programmatically set gains in all languages.

A similar approach can be used for calculating the F-gain on the outer loop.

6.4. Generating the trajectory points

Trajectory points can be generated using a number of techniques (trapezoidal, s-curve, etc.).
An excel sheet is provided to perform this generation to get started. “Motion Profile
Generator.xlsx” can be downloaded at...
http://www.ctr-electronics.com/talon-srx.html#product tabs technical resources

...and is available at our GitHub account.

Of course many users will choose to utilize their own motion profile generators, which is
acceptable as the trajectory point requirements are meant to be generic.

Opening this Excel file, we see the following view in the first sheet.

Cross The Road Electronics Page 17 2/08/2018

http://www.ctr-electronics.com/talon-srx.html%23product_tabs_technical_resources

Talon SRX Motion Profile Reference Manual 2/08/2018
prog(max speed) 4 00 rotations/sec
Dist 5 rotations
T4 400 ms Plots
12 200 ms 15
itp 10 ms
T4 1250 ms 10
FL1 40
FL2 20
N 125 s
‘ ; e \f] (X fsEC)
oOqocmmhd‘mﬂwﬂ‘vwr\lwﬂvwﬂmmvmn\omv m—Pos(X)
A N R R
CCO0CG GO dd Hod NN Nmmm m Ace
5
-10
-15 -
Time
Output |Output Output |Output |Output Cutput
Step Time Input Filter 1 sum Filter 2 Sum| 1if zero pt |Included |Vel (X/sec) |Pos(X) [Acc Is First Is Last
1 0] 0] 0] 0] 1] TRUE 0] 0 0] TRUE 0]
2) 0.01 1 0.025] 0.025 0] TRUE | 0.00952381] 4. 76E-05] 0.952381] FALSE | FALSE
3 0.02 1 0.05) 0.075 0] TRUE | 0.02380952] 0.000214[1.428571] FALSE | FALSE
4 0.03 1 0.075) 0.15 0] TRUE | 0.04285714] 0.000548] 1.904762| FALSE | FALSE
5 0.04 1 0.1 0.25 0] TRUE | 0.068666667] 0.001095] 2.380052] FALSE | FALSE
6 0.05 1 0.125) 0.375 0] TRUE 0.0952381] 0.001905] 2.857143] FALSE | FALSE
7 0.08) 1 0.15 0.525 0] TRUE | 0.12857143] 0.003024] 3.333333] FALSE | FALSE
8 0.07] 1 0.175) 0.7 0] TRUE | 0.168666667] 0.0045] 3.809524] FALSE | FALSE
9| 0.08 1 0.2 0.9 0l TRUE | 0.20952381] 0.006381[4.285714] FALSE | FALSE

The parameters (green cells in file) to configure are...

When the curve seems reasonable, the generated trajectory points are serialized a number of
ways.

TIP: if this profile is for drivetrain and you know what the max acceleration is before wheel-slip,

Vprog: This is the maximum target velocity in rotations per second. (Note if your desired

max speed is in RPM, you must multiply by 60).

Dist: The final target position to servo to in rotations.

T1 and T2: These are the acceleration time constants. By tweaking T1, you can control
how much of a ramp-up there is until reaching the peak velocity. By tweaking T2, you
can control how much rounding there is during the transition between the ramp and the
peak velocity. Watch the blue velocity curve and observe how it changes a T1 and T2

are modified.

Itp: The duration of each trajectory point. Default is 10ms per point. This effectively
determines how resolute each trajectory point is. Regardless of this value however, the

Talon will perform the motion profile inner loop every 1ms.

you can tweak T1 and T2 until the values under the acceleration column are below your max
acceleration.

Cross The Road Electronics

Page 18

2/08/2018

@ = s L R

w

10
11
12
13
14
15
16
17
18
19
20
21
22

Talon SRX Motion Profile Reference Manual

2/08/2018

6.4.1.Using a CSV File (for LabVIEW)

need to copy the blank lines at the bottom. This can go into a file to

Paosition (rotations) Velocity (RPS) Duration (ms) D The CSV tab can be used to Copy
G 0. i the values into a CSV file, which
4.76190476190476E-05, 0.009523809523809:10,

0.000214285714285714, 0.023809523809523i10,
0.000547613047619048, 0.042857142857142!10,

0.0010952380952381,
0.0019047619047619,
0.00302380952380952,
0.0045,
0.00638095238095238,
0.00871428571428571,
0.011547619047619,
0.0149285714285714,
0.0189047619047619,
0.0235238095238095,
0.0288333333333333,
0.0348809523809524,
0.0417142857142857,
0.0493809523809524,
0.0579285714285714,
0.0674047619047619,

0.0666666666666667 10,
0.095238095238095. 10,
0.128571428571429, 10,
0.166666666666667, 10,
0.20952380952381, 10,
0.257142857142857, 10,
0.30952380952381, 10,
0.266666666666667, 10,
0.428571428571429, 10,
0.495238095238095, 10,
0.566666666666667, 10,
0.642857142857143, 10,
0.723809523809524, 10,
0.80952380952381, 10,
0.9, 10,
0.995238095238095, 10,

supports it.

could then be placed into a
filesystem if the robot controller

The roboRIO, for example, could
read the CSV from its filesystem
easily using the LabVIEW

Parse our motion profile csv, each row is a
trajectory point

Get number of trajectory
points from our array.

% homellvuserimp.csv
1-Hz-H

H T
= -

» Step1_GenProfile Step2_CopyCSV m

] M -——F—+ 100%

Only copy to the final point, avoid copying blank
lines.

185
186

7] mp.csv - Netepad - [m] X ',—_
File Edit Format View Help -
a, e, 10, - 1 1 1
O sisomtisonrer bs, o.00ssma0sssss, 10, The cells can then be pasted into a simple text file and
0.800214285714285714, ©.0238095238895238, 1@,
0.800547619847619048, 8.8428571428571429, 10, Saved as a csev.
0.8010952386952381, ©.0666666666666667, 1@,
0.8019047619047619, ©.09523809523808952, 1@,
0.80302380952380952, ©.128571428571423, 1@,
0.8045, 0.166666666666667, 10,
0.080638095238095238, 0.20952380952381, 1@,
0.80871428571428571, 0.257142857142857, 1@,
0.811547619047619, 0.308952380952381, 18,
0.09149285714285714, 0.366666666666667, 18,
0.8189047619047619, 0.428571428571429, 18,
@.9235238095238895, 9.495238095238895, 1e,
@.e: N 8. A 10,
@.9348889523809524, 0.642857142857143, 1e,
0.8417142857142857, 0.723809523809524, 1e,
@.8493889523809524, 0.80952380952381, 1e,
0.8579285714285714, 0.9, 1e,
0.9674847619047619, 9.995238095238895, 1e,
0.9778571428571429, 1.8952388952381, 1e,
9.0893895238095238, 1.1952388952381, 1e,
.
< >

|| vuser - o x

Access over FTP can be | .

v 4 [ftpi//roborio-469-frc.local/home/vuser/| V] | Search hvuser r)

done with Windows = e _
=2
Explorer, or your @ OneDie] =/ M
: - = iz T mien gem . gumpr lepatnsnt mena oCommal__
favorite FTP client. 8 Desop ‘ e ;

Documnents

9items

6.4.2. Using an array in a script language. (C++, Java, HERO C#, etc.).
The supplemental sheets will create a double-precision array (N X 3) where each row
represents a trajectory point, for a total of N trajectory points. For each row, the first cell is the

Cross The Road Electronics Page 19 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

position in rotations, the second cell is the velocity in RPM, and the third parameter is
durationMs (though this could be optimized out as this is generally constant).

= - fr
A 5 c b Here is an example of the
4 13 ” M
5 |package org.usfirst.frc.team3539.robot; |: COpyJ ava tab, WhICh
& |public class MotionProfile { produces a Java-style
7 public static final int kNumPoints =185; H
8 Il Position (rotations) Velocity (RPM) Duration (ms) array WhICh can be
9 public static double [[[[Points = new double[J[|{ copied into an FRC Java
10 {0, 0 103, .
11 [4.76190476190476E-05, 0571428571 10}, application.
12 {0.000214285714285714, 1.428571429 103,
13 {0.000547619047619048, 2.571428571 103,
14 {0.0010952380952381, 4 103,
15 {0.0019047619047619, 5.714285714 103,
16 {0.00302380952380952, 7.714285714 103,
17 {0.0045, 10 10},
18 {0.00638095233095238, 12.57142857 103,
19 {0.00871428571428571, 15.42857143 103,
20 {0.011547619047619, 18.57142857 103,
21 {0.0149285714285714, 2 103,
22 {0.0189047619047619, 25.71428571 103,
23 {0.0235238095238095, 29.71428571 10},
24 {0.0288333333333332, 34 103,
25 {0.0348809523309524, 38.57142857 103,
26 {0.0417142857142857, 43.42851143 103,
27 {0.0493809523309524, 4857142857 103,
28 {0.0579285714285714, 54 103,
4 » .| Step2_CopyC++Header Step2 Copylava | .. (¥ 1]
READY i3] -————+ 100

6.5. Sending the trajectory points

The robot API includes functions to clear and push trajectory points into the Talon. The status
can be polled periodically to determine if enough trajectory points have been buffered to start
the motion profile.

If the motion profile is large or if the motion profile needs to start quickly (before buffering fills
Talon completely), the application should set the process periods to keep pace with the rate of
the motion profile. In other words, if your profile has trajectory points that have 10ms durations,
then the application task that processes the profile should process at least as fast. A
conservative recommendation is to process at half the period (so twice as fast).

6.5.1.Sending the trajectory points - Java

For example, this routine takes the double-array of trajectory points and passes it into the Talon object.
The routine clearMotionProfileHasUnderRun () Is called first just in case we are interrupting a
previous MP. Then pushMotionProfileTrajectory () iS called once per point. These functions
return immediately as the points are stored in the RIO initially. This buffer is referred to as the “Top-
level” or API-level buffer.

Cross The Road Electronics Page 20 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

If the profile is very large (2048 points or more) the function may return a nonzero error code. In
which case caller can periodically call pushMotionProfileTrajectory () to stream the profile into
the API, or use larger trajectory point durations, or modifying the library to increase the capacity.

Periodic calls to processMotionProfileBuffer () then empty the data points into the Talon’s
low-level (firmware) buffer. For this reason, this routine should be called quickly enough to keep
pace with the execution of the

private void startfilling(double[][] profile, int totalcnt) {

/* create an empty point */
TrajectoryPoint point = new TrajectoryPoint();

/* did we get an underrun condition since last time we checked ? */
if (_status.hasUnderrun) {
7* better log it so we know about it */
Instrumentation.OnUnderrun();
=
* clear the error. This flag does not auto clear, this way we never
* miss logging it.
=

_talon.clearMotionProfileHasUnderrun(8);
¥

e

* just in case we are interrupting another MP and there is still buffer
* points in memory, clear it.

.

_talon.clearMotionProfileTrajectories()s

e
* set the base trajectory period to zero, use the individual trajectory
* period below
.

_talon.confighotionProfileTrajectoryPeriod(Constants. kBaseTrajPeriodis, Constants.kTimeouths);

/* This is fast since it's just inte our TOP buffer */
for (int i = 8; i < totalCnt; ++i) {
double positionRot = profile[i][@];
double velocityRPM = profile[i][1];
/* for each point, fill our structure and pass it to API */
point.pesition = positionRet * Constants.kSensorUnitsPerRotation; // Convert Revelutions to Units
point.velocity = velocityRPM * Constants.kSensorUnitsPerRotation / 688.@; // Convert RPM to Units/1g@ms
point.headingDeg = @; /* future featurs - not used in this example */
point.profileSlotSelectd = @; /* which set of gains would you like to use [8,3]? =/
point.profileslotselectl = @; /* future feature - not used in this example - cascaded PID [@,1], leave zero */
point.timeDur = GetTrajecteryDuration((int) profile[i][2]);
point.zercPos = false;
if (i = @)
point.zeroPos = true; /* set this to true on the first point */
point.islastPoint = false;
if ((i+ 1) == totalCnt)
point.isLastPoint = true; /* set this to true on the last point */

_talen.pushtietionProfileTrajectory(point);

profile, if the MP is firing before
buffering is finished.

A conservative approach is to call
the routine twice as fast as the MP.
For example, if the MP uses 10ms
trajectory points, therefore the
notifier task that calls
processMotionProfileBuffer ()
is set to fire every 5ms to ensure it
has sufficient opportunity to funnel
trajectory points into the Talon.
Typically, this can be done by
creating a thread or task that calls
the
processMotionProfileBuffer()
member function of the TalonSRx
object.

The function is re-entrant and does not require any “locking” strategy.

’llc'k

Lets create a periodic task to funnel our trajectory points into our talon.

Pty

It doesn't need to be wvery accurate, just needs to keep pace with the motion

profiler executer.

How if you're trajectory points are =zlow,

there is no need

Generally speaking you want to call it at least twice as fast as the duration

aof your trajectory points.

So if they are firing every 20m=s, you should call

=

=

* to do this, just call _talon.processMotionProfileBuffer() in your telegp loop.
*®

L

=

every 10ms.

class PeriocdicBunnable implements java.lang.Runnable {
poblic void run() {
}

Notifier notifer = new Notifier (new PeriodicRunnable());

_talon.processMotionProfileBuffer () ; H

Here’s where the period is set for our notifier. To be conservative, the transmit rate of the
motion profile control CAN frame is set to match to ensure the communication is optimal.

Cross The Road Electronics Page 21

2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

The benefit of this is that the precision of the notifier isn’t a factor in how smooth the motion
profile executes. This means spikes in CPU don’t adversely affect the motion profile.

g1

_talon.changeMotionControlFramePeriod(5)
_notifer.startPericodic(0.005);

6.5.2. Sending the trajectory points - LabVIEW
Similar to the API in the script-based languages, LabVIEW has a method for controlling the
Motion Profile Control Frame Rate and a method to schedule tasks in a period fashion.

The Enhanced Motor Controller - Control Frame Rate
VI is used to change the motion profile control frame
E-MC

rate from the default value of 10ms to 7ms. fControl_6_MotProfAddTrajPoint v] s

|Speeu:| up MP Frame Rate a bit - ?m5|

In the LabVIEW example, the Periodic Tasks VI is used for motion-profile tasking. It is ideal
since it is timed and runs in parallel to the rest of robot application.

[If we have more points to insert, and Talen can fit one more, insert that point|
E | True 't =

{TrajectoryDuration_Oms |

Create a Trajectory Point and fill it in.

If our cursor is less than total and Vel and Pos are copied from the csv row. Slot is

Talon can fit next point, send it. hardcoded to match the roboRIO web-based config,

_____________________) |IsLast is true for the last point. ZeroPosition is true for e
E} the first point to auto clear the sensor position, Faitit

T

: @ -4096 |>
- 4006 D
P t :;: wt 0O
QINT CUrsor :: g 0 ::

]
Y
sz
&

Total Count

Here is a case structure that conditionally inserts the next trajectory point into in the CAN control
frame if there is room for the next point, and if the next point is available.

Cross The Road Electronics Page 22 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

6.6. Activating the Motion Profile
Once the robot application has confirmed that there are points in the Talon buffer, the
application can “fire” the buffered Motion Profile by setting the Talon output to ‘1.

Care should be taken to not activate the executer until the robot application has confirmed there
are trajectory points in the firmware buffer by polling the MPB status.

6.6.1. Activating the Motion Profile - Java
Pass a ‘1’ or setvalueMotionProfile.Enable to signal the Talon to start executing the
buffered profile.

_talen.sgt(ControlMode.MotionProfile, SetValueMotionPr‘o‘File,{b g

. 2% clace: Claccecom ctre phoenicmotion qwmf.la
* i btn is pressed and was not pressed last time, In other ¥ Disable : SetValueMotionProfile - otio
we just detected the on-press ewvent. This will signal the %FEnabhg,Set\.famer\.qgtmnpmme

._'” start a He % Hold : SetValueMotionProfile -
1'F ((b*’n:[ﬁ] = true) 8% (_ btnsLast[G] == false)) { F Invalid : SetValueMotionProfile - SetValuelotio
* user just tapped button & */ & valueOf(int arg0) : Set‘u’alueMotlonProflle L
1 . & valueQf(5tring name) : SetValueMetionProfile -
Jf --- We could start an MP if MP isn't already running - _s , ’ IO
_example.startMotionProfile(); & \r;lluest] : SetValueMotionProfile[] - SetValuehotionProfile

3 this

& valueOf(Class<T= enumType, String name) : T - Enum

6.6.2. Activating the Motion Profile - LabVIEW

The motion profile executer can be controlled with the set value parameter of the Change Mode
VI, or using the general motor set VI. In this example the control mode and Set Value are set at
the same time.

Top buttond
Enter Motion Profile Mode - Hold Qutput

Bottom Buttend
Enter Motion Profile Mode - Disabled Output

Right button3
Enter Motion Profile Mode - Enable Output

M Mz
1 1 CHAMGE| 13 1 T - CHANGE
#Motion Profile |- [- Maotion Profile 21 rone

N - 1o :HAHGE|
Maotion Profile 1 HODE

Care should be taken to only “hold” the active trajectory point if target velocity is zero.

6.7. Checking the Motion Profile Status
Robot application should check on the MP’s status to determine ifiwhen the MP is finished.

Cross The Road Electronics Page 23 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

6.7.1. Checking the Motion Profile Status - LabVIEW
In LabVIEW, the status signals relating to Motion Profile are available in the general Get
Profile Status VI. Use the “Unbundle By Name” object.

Position (Sensor Units)

Top Buffer Remaining
Top Buffer Count
Bottom Buffer Count
Has Underrun?

Is Underrun?

Active Point Valid?
|z Last?
Profile Slot Select 0
Output Enable
Time Duration (ms)
Profile Slot Select 1

6.7.2. Checking the Motion Profile Status - Java
See Section 5.2 for example function call. Checking the status is necessary for...
e Determining that a sufficient number of trajectory points are in the MPB before activating
the MPE.
¢ Determining when the MPE is in enable/disable/hold, after robot application has
changed the desired state using set().
e Confirming MPE is in disable/hold before calling the clear and push routines for buffering
trajectory points for the next motion profile. It is important to confirm that MPE is no
longer interacting with MPB, before inserting new points into the MPB.

6.8. Complete Example Overview

6.8.1. Complete Example - LabVIEW
The LabVIEW example has all of the software integration steps completed in the Periodic Tasks
VI. See Section 7 for download link.

Cross The Road Electronics Page 24 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

el e
Luss ot o

i s eneren
| ey I N——

mrya—

e e s G Bigo®

s <K

=

In Begin.vi, the Talon SRX reference is created with a CAN Device ID of ‘0’. See Talon SRX
Software Reference Manual for more information on CAN Device IDs.

The string “DUT” is used to reference the Talon
|CTRE Device Under Test - Motion Profile Example] SRX. DUT stands for “Device Under Test”,
however most developers name the motor
controller to something more specific: “arm,
shooterWheel, LeftFrontDrive, etc.).

Instructions for testing are on the front-panel (below).

For example, manual control of the Talon can be be done by holding down Button 1 and using
the left y-axis. If using another input-device, generally the “first” y-axis will control the Talon
SRX.

1. Teleop-Enable Robot.

2. Press Top right shoulder to buffer motion profile.

3. Press Button3 to fire motion profile.

4. When profile is finished press button2 to neutral motor or buttond to servo final
position.

5. Press Top right shoulder again to buffer another motion profile and repeat.

Top right shoulder will start buffering the motion profile.
Press and Hold Button1 to straight-drive Talon SRX.

ss Buttond to enter Motion Profile -Hold Output
Top left shoulder will clear the "Has Underrun flag" This will signal Talon to continue driving current
trajectory point without looking at the buffer.
This way you can start buffering the next profile
while Talon continues position servo.

Press Button3 to enter Motion Profile - Enable Output
This will start executing the buffered profile.

Press Button2 to enter Motion Profile - Disabled Output

Cross The Road Electronics Page 25 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

Watching the intrumented signals on the left side while testing the example can also help users
learn more about how this feature works.

6.8.2. Complete Example - Java
See Section 7 for download link. The project primary depends on two classes.

MotionProfileExample implements the integration steps in Section 6, including polling motion
profile status and deciding when to “fire” the Motion Profile.

Robot.java creates a MotionProfileExample Object and uses startMotionProfile() and
reset() to signal the MotionProfileExample Object what to do.

Be sure to look at the Output window to watch the changes in state of the Motion Profiler
Executer.

Note that MotionProfileExample doesn’t actually change the control mode or the set value.
That is done in Robot.java so that logic for changing modes can be done in one place.

The TalonSRX is created in Robot.java and uses the specified device ID under the Constants
class. See Talon SRX Software Reference Manual for more information on CAN Device IDs.

15 f**

2 * This Java FRC robot application is meant to demonstrate an example using the Motion Profile control mede

3 * in Taleon SRX. The CANTalon class gives us the ability to buffer up trajectory points and execute them

4 * as the roboRIO streams them into the Talon SRX.

5 *

6 * There are many valid ways to use this feature and this example does not sufficiently demonstrate every possible
7 * method. Motion Profile streaming can be as complex as the developer needs it to be for advanced applications,
8 * or it can be used in a simple fashion for fire-and-forget actions that require precise timing.

=] *

1@ * This application is an IterativeRobet project to demonstrate a minimal implementation not requiring the command
11 * framework, however these code excerpts could be moved into a command-based project.

1z *

13 * The project also includes instrumentation.java which simply has debug printfs, and a MotionProfile.java which is generated
14 * in @link https://docs.google.com/spreadsheets/d/1PgT18EeQiRI2LNXEOEE3VGNTI7P7WDPALBCOxQgCEkE,/ edit#gid=18137706308&vpid=A1
15 * or find Motion Profile Generator.xlsx in the Project folder.

s *

17 * Logitech Gamepad mapping, use left y axis to drive Talon normally.

18 * Press and hold top-left-shoulder-buttonS to put Talen into motion profile contrel mode.

19 * This will start sending Motion Profile to Talon while Talen is neutral.

28 *

21 * while holding top-left-shoulder-buttenS, tap top-right-shoulder-buttons.

22 * This will signal Talon to fire MP. When MP is done, Talon will "hold" the last setpoint position

23 * and wait for another buttoné press to fire again.

24 *

25 * Release button5 to allow PercentOutput control with left y axis.

26 */

27

25 package org.usfirst.frc.team217.robot;

28

384 import com.ctre.phoenix.motorcontrol.can.*;[]

35

36 public class Robot extends IterativeRobot {

37

38 /** The Talon we want to motion profile. */

39 TzlonSRX _talon = new TalonSRX(Constants.kTalonID);

4@

41 /** some example logic on how one can manage an MP */

42 MotionProfileExample _example = new MotionProfileExample(_talon);

43

a4 /** joystick for testing */

45 Joystick _joy = new Joystick(e);

6.8.3.Complete Example - C++
See Section 7 for download link. The project primary depends on two classes.

Cross The Road Electronics Page 26 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

MotionProfileExample implements the integration steps in Section 6, including polling motion
profile status and deciding when to “fire” the Motion Profile.

Be sure to look at the Output window to watch the changes in state of the Motion Profiler
Executer.

Robot.cpp creates a MotionProfileExample Object and uses startMotionProfile() and
reset() to signal the MotionProfileExample Object what to do.

Note that MotionProfileExample doesn’t actually change the control mode or the set value.
That is done in Robot.java so that logic for changing modes can be done in one place.

The TalonSRX is created in Robot.cpp and uses the ID specified in constants.h. See Talon
SRX Software Reference Manual for more information on CAN Device IDs.

15 f**

and wait for another button6 press to fire again.

2 * This C4++ FRC robot application is meant to demonstrate an example using the Motion Profile control mode
3 * in Talon SRX. The CANTalon class gives us the ability to buffer up trajectory points and execute them
4 * as the roboRIO streams them intoc the Talen SRX.
5 *
6 * There are many valid ways to use this feature and this example does not sufficiently demonstrate every possible
7 * method. Motion Profile streaming can be as complex as the developer needs it to be for advanced applications,
8 * or it can be used in a simple fashion for fire-and-forget actions that require precise timing.
=1 *
12 * This application is an IterativeRobot project to demonstrate a minimal implementation not requiring the command
11 * framework, however these code excerpts could be moved inte a command-based project.
12 *
13 * The project also includes Instrumentation.h which simply has debug printfs, and a MotionProfile.h which is generated
14 * in @link https://docs.google.com/spreadsheets/d/1PgT1@EQiRI2ZLNXEQE3IVGNTITP7WDPALACOX0gCBkA/ edit#gid=18137706308vpid=A1
15 * or use the Motion Profile Generator.xlsx file in the project folder.
s *
17 * Logitech Gamepad mapping, use left y axis to drive Talon normally.
18 * Press and hold top-left-shoulder-buttonS te put Talon inte motion profile control mode.
12 * This will start sending Motion Profile to Talen while Talen is neutral.
28 *
21 * while holding top-left-shoulder-buttonS, tap top-right-shoulder-buttoné.
22 * This will signal Talon to fire MP. When MP is done, Talon will "hold" the last setpoint position
*
*
*

Release button5 to allow OpenVoltage control with left y axis.
26 */

27 #include "Instrumentation.h™

28 #include "WPILib.h"

20 #include "MotionProfileExample.h™

3@ #include "ctre/Phoenix.h™

31 #include "Constants.h”

32

33= class Robot: public IterativeRobot {

34 public:

35 /** The Talon we want te motion profile. */
36 TalenSRX _talon;

37 VictorSPX _wic;

38

39 /** zome example logic on how one can manage an MP */
48 MotionProfileExample _example;

41

42 /** joystick for testing */

43 Joystick _joy;

Cross The Road Electronics Page 27 2/08/2018

Talon SRX Motion Profile Reference Manual 2/08/2018

7. Download the Examples

Generally speaking, all source and generator files can be found in
https://github.com/CrossTheRoadElec under “Phoenix-Examples-Languages” or “Phoenix-
Examples-LabVIEW”.

7.1. Download a file “as is” from GitHub

[Z CrossTheRoadElec / FRC-Examples @ uUnwatch- 1k Star o ¥Fork o
<> Code (1) Issues o 11 Pull requests o =5 Wiki 4~ Pulse il Graphs 13 Settings When reVIeWIng a non_
text based file, press
granch master - FRC-Examples / Motion Profile Generator.xlsx Findfile = Copy path
the “Raw” button to
.uzrien Excel motion profile generator ef22858 a day ago

download the file as-is.

1 contributor

128 KB Hiitﬂl')' oo

Cross The Road Electronics Page 28 2/08/2018

https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

12
@

Talon SRX Motion Profile Reference Manual 2/08/2018

7.2. Download links
These links are tested at the time of writing. However, these resources can also be found by
navigating through the CTRE GitHub account.

Motion Profile Generator Excel Sheet
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/blob/master/Java/MotionProfile/Motion%20Profile%20Generator.xlsx
Java Motion Profile Example
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java/MotionProfile

LabVIEW Motion Profile Example

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW/tree/master/MotionProfile

C++ Motion Profile Example
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/C%2B%2B/MotionProfile

7.3. Example—HERO C# "= — ?
For HERO development board 4 Instales | & e wmor [

users, an example Motion Profile iz = [— e e e
project can be found after installing o P

the HERO-SDK-Installer and using o Visva C#

the default Visual Studio HERO e s Wcastin D B Visua Co

example project. - S7R Hero Motion Pofie Example Visual C# CTR
Example Visual Studio Project is e A winsow sopicaton Visual C# B scaowce’
also available at the CTRE GitHub s e 0

Account. b Typescrpt

Python
P JavaScript

b Online ckherelog

Name: Hero N on Profile Example6

Location: c\ \documents\visual studio 2015\Projects = Browse...

Solution name: Hero Motion Profile Example6 V| Create directory for solution

Add to source control

OK Cancel

8. Suggested Testing / General Recommendations

Additionally, testing is recommended to ensure robot responds in an expected fashion if the
Talon motor controller is power cycled or disconnected from robot controller during a motion
profile. The motion profile control mode is unique in that information is streamed to a motor
controller, so be sure to test your robot’s response to intermittent connections where the stream
is momentarily or permanently severed (disconnected CAN wires or unpowered Talon).

As with all advanced control modes, it's often helpful to have an override mode to allow the
human operator to manually control a mechanism (sensor failure or alignment, sensor

disconnect, mechanical failures, gear-teeth skipping, software issue, etc.).

Having a method to “re-zero” or “re-tare” your sensors can also be helpful (see Section 16.19 in
Talon Software Reference Manual).

Cross The Road Electronics Page 29 2/08/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/blob/master/Java/MotionProfile/Motion%20Profile%20Generator.xlsx
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java/MotionProfile
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW/tree/master/MotionProfile
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/C%2B%2B/MotionProfile

Talon SRX Motion Profile Reference Manual 2/08/2018

9. Troubleshooting Tips and Common Questions

9.1. Where can | find the other resources mentioned? Software Reference

Manual, Motion profile generator, example source?
Under the “Tech Resources” tab on the Talon SRX product page.
http://www.ctr-electronics.com/talon-srx.html#product tabs technical resources
Programming examples are mentioned in_Section 7.

9.2. What motor controllers, which firmware is required for this feature?
This document assumes that you are using Talon SRX wired to CAN Bus.
The firmware version requirements are...

@ FRC: equal to or greater than 3.0.

>
“¥A Non-FRC or general use: equal to or greater than 10.0.

Cross The Road Electronics Page 30 2/08/2018

http://www.ctr-electronics.com/talon-srx.html%23product_tabs_technical_resources

Talon SRX Motion Profile Reference Manual

2/08/2018

10. Functional Limitations

10.1. C++ References missing in document.
Because of how similar the C++ and Java examples are, this document references the Java
example only. However, the C++ example is nearly-line-for-line identical outside of the
obvious language differences between C++ and Java. The C++ example works identically to
the Java example, therefore following the Java document references should be sufficient for

C++ users.

11. Revision History

Rev Date Description
1.0 19-Jan-2016 -Initial Release for 2016 FRC Season
2.0 08-Feb-2018 -Update for Phoenix Framework and 2018 Season

Cross The Road Electronics Page 31

2/08/2018

	1. What is the Motion Profile Control Mode?
	1.1. What is the benefit?

	2. Functional Diagram
	3. Signal List and Terms
	3.1. Motion Profile Buffer (MPB)
	3.2. Motion Profile Executer (MPE)
	3.3. Global Trajectory Point Duration
	3.4. Trajectory Point
	3.4.1. The Last Trajectory Point
	3.4.2. Trajectory Point Duration (Milliseconds)
	3.4.3. Trajectory Point Velocity
	3.4.4. Trajectory Point Position
	3.4.5. Trajectory Point Heading (Degrees)
	3.4.6. Trajectory Point Profile Slot Select 0
	3.4.7. Trajectory Point Profile Slot Select 1
	3.4.8. Trajectory Point Is Last
	3.4.9. Trajectory Point Zero Position

	3.5. Motion Profile Set Value (Set Output, or Output Type)
	3.6. Active Trajectory
	3.6.1. Active Trajectory Is Valid
	3.6.2. Active Trajectory Velocity
	3.6.3. Active Trajectory Position
	3.6.4. Active Trajectory Heading
	3.6.5. Active Trajectory Profile Slot Select 0
	3.6.6. Active Trajectory Profile Slot Select 1
	3.6.7. Active Trajectory Is Last
	3.6.8. Active Trajectory Zero Position

	3.7. Is Underrun
	3.8. Has Underrun
	3.9. (Bottom, Firmware-level) Buffer Count
	3.10. (Bottom, Firmware-level) Buffer Is Full
	3.11. Feed-Forward Gain
	3.12. Proportional Gain
	3.13. Integral Gain
	3.14. Derivative Gain
	3.15. (Top, API-level) Buffer Count

	4. Theory of Operation
	5. New Motion Profile API
	5.1. New Motion Profile API – LabVIEW
	5.2. New Motion Profile API – Java

	6. Software Integration Steps
	6.1. Test Gamepad
	6.2. Direct Drive the Talon SRX and Check Sensor
	6.2.1. Direct Drive the Talon SRX and Check Sensor - Java

	6.3. Measure Peak RPM to Calculate F-gain
	6.4. Generating the trajectory points
	6.4.1. Using a CSV File (for LabVIEW)
	6.4.2. Using an array in a script language. (C++, Java, HERO C#, etc.).

	6.5. Sending the trajectory points
	6.5.1. Sending the trajectory points – Java
	6.5.2. Sending the trajectory points – LabVIEW

	6.6. Activating the Motion Profile
	6.6.1. Activating the Motion Profile – Java
	6.6.2. Activating the Motion Profile – LabVIEW

	6.7. Checking the Motion Profile Status
	6.7.1. Checking the Motion Profile Status – LabVIEW
	6.7.2. Checking the Motion Profile Status – Java

	6.8. Complete Example Overview
	6.8.1. Complete Example – LabVIEW
	6.8.2. Complete Example – Java
	6.8.3. Complete Example – C++

	7. Download the Examples
	7.1. Download a file “as is” from GitHub
	7.2. Download links
	7.3. Example – HERO C#

	8. Suggested Testing / General Recommendations
	9. Troubleshooting Tips and Common Questions
	9.1. Where can I find the other resources mentioned? Software Reference Manual, Motion profile generator, example source?
	9.2. What motor controllers, which firmware is required for this feature?

	10. Functional Limitations
	10.1. C++ References missing in document.

	11. Revision History

